DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Program Code: Department:

M. Tech. (Geotechnical Engineering)

CE Civil Engineering

L

18

Teaching Scheme				C Hou	onta Irs/W	ct 'eek	Ex Dura	am ation	R	elativ	/e We	ight (%	b)	
S. No.	Subject Code	Course Title	Subject Area	Credits	L	т	Ρ	Theory	Practical	CWS	PRS	MTE	ETE	PRE
		Sem	ester-I(A	utumr	ו)				-	-				
1.	CEN-521	Advanced Numerical Analysis	PCC	4	3	-	2	3	-	15	25	20	40	-
2.	CEN-522	Advanced Soil Mechanics	PCC	4	3	1	2/2	3	-	20	20	20	40	-
3.	CEN-523	Engineering Behaviour of Rocks	PCC	4	3	1	2/2	3	-	20	20	20	40	-
4	CEN-524	Soil Dynamics and Machine Foundations	PCC	4	3	1	-	3	-	25	-	25	50	-
5.	CEN-542	Continuum Mechanics	PCC	4	3	1	-	3	-	25	-	25	50	-
		Total		20	12	3	4							
		Sen	nester-II (S	pring)									
1.	CEN-700	Seminar	SEM	2	0	0	2	-	-	-	-	-	100	-
2.		Programme Elective-I	PEC	4	-	-	-	-	-	-	-	-	-	-
3.		Programme Elective-II	PEC	4	-	-	-	-	-	-	-	-	-	-
4.		Programme Elective-III	PEC	4	-	-	-	-	-	-	-	-	-	-
5.		Programme Elective-IV	PEC	4	-	-	-	-	-	-	-	-	-	-
		Total		18										

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Program Code:18M. TecDepartment:CECivil EYear:II

18 M. Tech. (Geotechnical Engineering) CE Civil Engineering

Contact Exam **Teaching Scheme Relative Weight (%)** Hours/Week Duration Subject Area Practical Theory Credits . No CWS PRS MTE PRE Subject ETE **Course Title** Т Ρ L Code ഗ് Semester-I (Autumn) Dissertation Stage-I CEN-DIS 1. 12 100 -----701A (to be continued next semester) Total 12 Note: Students can take 1 or 2 audit courses as advised by the supervisor, if required. Semester-II (Spring) CEN-Dissertation Stage-II 1. DIS 18 100 ---------701B (contd. From III semester) Total 18

Summary				
Semester	1	2	3	4
Semester-wise Total Credits	20	18	12	18
Total Credits	68			

Teaching Scheme			C Hou	ontae urs/W	ct eek	Ex Dura	am ation	R	elativ	e Wei	ght (%	%)		
S. No.	Subject Code	Course Title	Subject Area	Credits	L	т	Ρ	Theory	Practical	CWS	PRS	MTE	ETE	PRE
1.	CEN-621	Advanced Geotechnical Exploration and Testing	PEC	4	3	1	-	3	-	25	-	25	50	-
2.	CEN-622	Advanced Foundation Engineering	PEC	4	3	1	2/2	3	-	20	20	20	40	-
3.	CEN-623	Stability Analysis of Slopes	PEC	4	3	1	-	3	-	25	-	25	50	-
4.	CEN-624	Design of Under-Ground Excavations	PEC	4	3	1	-	3	-	25	-	25	50	-
5.	CEN-625	Ground Improvement Engineering	PEC	4	3	1	-	3	-	25	-	25	50	-
6.	CEN-626	Foundations on Weak Rocks	PEC	4	3	1	-	3	-	25	-	25	50	-
7.	CEN-627	Landslide Analysis and Control	PEC	4	3	1	-	3	-	25	-	25	50	-
8.	CEN-628	Constitutive Modeling of Geological Materials	PEC	4	3	1	-	3	-	25	-	25	50	-
9.	CEN-545	Finite Element Analysis	PEC	4	3	-	2	3	-	15	25	20	40	-
10.	CEN-650	Design of Bridge Sub-structure	PEC	4	3	-	2	3	-	15	25	20	40	-

Program Elective Courses (Geotechnical Engineering)

NAME OF DEPTT/CENTRE :

- 1. Subject Code : CEN-521 Course Title : Advanced Numerical Analysis
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 046. Semester: Autumn7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective of Course: To impart knowledge of various numerical techniques to solve the problems of geotechnical engineering.

10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Introduction, roots of a non-linear equation and roots of a polynomial of n th degree	10
	[incremental search method, method of successive approximations, Newton's	
	method, bisection method, secant method, Müller's method, synthetic division,	
	Bairstow's method] and convergence study	
3.	Solution of (non-homogeneous) linear algebraic equations, review of matrix algebra,	06
	Gauss elimination method, Cholesky's decomposition method, householder method,	
	Gauss-Siedal iterative method	
4.	Solution of non-linear algebraic equations, method of successive approximation,	04
	Newton's method, modified Newton – Raphson method, secant method	
5.	Eigen values and Eigen vectors, reduction of generalized Eigen value problem to the	08
	standard Eigen value problem, methods for obtaining Eigen values and Eigen vectors	
	[polynomial method, vector iteration method, Mises power method, Jacobi method]	
6.	Time marching schemes for solution of problems in time domain, numerical	04
	integration (2 – D) [Newton – Cotes method, Gauss – Legendre method]	
7.	Solution of ordinary and partial differential equations, Euler's method, Runge - Kutta	10
	method, finite difference method, applications to problems of beam and plates on	
	elastic foundation, Laplacian equation, consolidation equation, laterally loaded piles	
	etc	
	Total	42

List of Practicals:

- 1. Development of algorithms/codes by considering different methods for: roots of equations
- 2. Solution of simultaneous equation (linear-nonlinear),
- 3. Eigen value and Eigen vectors
- 4. Numerical integration
- 5. Solution of differential equation

11. Suggested Books:

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Chapra, S. C. and Canale R. P., "Numerical Methods for Engineers", Tata	2003
	McGraw hill	
2.	Carnahan, B., Luther, H. A. and Wilkes, J. O., "Applied Numerical Methods",	1969
	John Wiley	
3.	Heath, M. T., "Scientific Computing : An Introductory Survey", McGraw hill	1997
4.	Douglas Faires, J. and Richard Burden, "Numerical Methods", Thomson	2003
5.	Rajasekaran, S., "Numerical Methods in Science and Engineering", S. Chand	1999

: Department of Civil Engineering

Department of Civil Engineering

NAME OF DEPTT/CENTRE :

- 1. Subject Code : CEN-522 Course Title : Advanced Soil Mechanics
- 2. Contact Hours : L: 3 T : 1 P: 2/2
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :20 PRS: 20 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 046. Semester: Autumn7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To give advanced knowledge of mechanics governing the behaviour of soils to students so that they are able to understand the behaviour of foundations and structures constructed in/on them.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Fundamental aspects of soil mechanics, characteristics of soil, particulate nature, weight volume relationship	02
2.	Flow of water through soils, permeability, flownets	02
3.	Theory of elasticity, few aspects of elasticity, plane stress and plane strain problems	05
4.	Pore water pressure, undrained loading, determination of pore water pressure parameters	05
5.	Consolidation, Terzaghi's 1-D consolidation theory, layered soils, time dependent loading, 2-D problems, 3-D consolidation (axisymmetric problems, vertical drains), creep/secondary consolidation and basic of rheological models	09
6.	Shear strength, stresses in soils, Mohr's circle, stress paths, UU, CU, CD tests, drained and undrained stress-strain relationships and shear strength	09
7.	Critical state theory, normal consolidation line, critical state line, Roscoe surface, Hvorslev surface, no tension line	04
8.	Constitutive laws for soils	06
	Total	42

List of Practicals:

- 1. Determination of relative density
- 2. Vane shear test
- 3. Consolidation tests
- 4. Direct shear and tri-axial compression test UU, CU, CD tests
- 5. Influence of strain rate
- 6. Stress path testing etc.

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Das, Braja, M., "Advanced Soil Mechanics", Taylor & Francis	1983
2.	Lambe, T. William and Whitman, Robert V., "Soil Mechanics", John Wiley.	2000
3.	Craig, R.F., "Soil Mechanics", Chapman & Hall.	1993
4.	Suklje, L., "Rheological Aspects of Soil Mechanics", John Wiley.	1969
5.	Terzaghi, K. and Peck, R.B., "Soil Mechanics in Engineering Practice", John	1967
	Wiley.	
6.	Davis, R.O. and Selvadurai, E.P.S. "Elasticity and Geomechanics", Cambridge	1995
	University Press.	

Department of Civil Engineering

NAME OF DEPTT/CENTRE :

- 1. Subject Code : **CEN-523** Course Title : **Engineering Behaviour of Rocks**
- 2. Contact Hours : L: 3 T:1 P: 2/2
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :20 PRS: 20 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 046. Semester: Autumn7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To impart to students the knowledge of the basic mechanics which governs the behaviour of rocks and rock masses so that they can understand the mechanics of structures constructed in/on them.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Introduction, definitions, development of rock mechanics, activities and applications	3
	of rock mechanics and rock engineering	
2.	Properties of intact rocks, types of specimens for testing-, uniaxial compressive	6
	strength tests- tolerance limits and requirements, preparation of specimens, factors	
	affecting UCS, modes of failures, stress strain curves, post failure behaviour	
3.	Tensile strength, direct methods, indirect methods, miscellaneous methods	2
4.	Shear tests, single shear test, double shear test, punch test, direct shear test, oblique	4
	shear test, triaxial strength of rocks - triaxial strength test, Coulomb's theory, Mohr	
	envelopes and p-q plots	
5.	Strength criteria for intact rocks, rock strength criteria by Coulomb-Navier,	8
	Griffith's (1924), Mcclintock and Walsh (1962), empirical failure criteria by	
	Bieniawski (1974), Hoek and Brown (1980), Ramamurthy (1993), Singh and Singh	
	(2005)	
6.	Classification of intact rocks, geological classification, geotechnical classification,	8
	classification of jointed rocks, Terzaghi (1946), Deere (1968), RQD, RMR, Q-	
	systems, BGD, J _f concept, RMI, GSI, strength behaviour of jointed rocks, scale	
	effect, classification approaches	
7.	Deformational behaviour of jointed rocks, definitions, computation of modulus of	7
	deformation through RMR, Q, GSI and J _f , constitutive modeling	
8.	Flow through jointed rock mass, hydraulic conductivity and flow nets, ground water	4
	flow in fractured rocks, measurement of water pressure, field tests	
	Total	42

List of Practicals:

- 1. Physical properties
- 2. Uniaxial compression test
- 3. Brazilian test
- 4. Point load strength index test
- 5. Triaxial compression test
- 6. Oblique shear test
- 7. Sonic wave velocity
- 8. Permeability test
- 9. Field shear test
- 10. Schmidt hammer test.

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Hudson, J.A. and Harrison, John P., "Engineering Rock Mechanics- An	2000
	Introduction to the Principles", Elsevier.	
2.	Jaeger, J.C. and Cook, N.G.W., "Fundamentals of Rock Mechanics", Mathew	1979
	& Co. Ltd.	
3.	Singh, B. and Goel, R.K., "Rock Mass Classification- A Practical Engineering	2006
	Approach", Elsevier.	
4.	Hoek, E., "Practical Rock Engineering", Rock Science.	2000
5.	Ramamurthy, T., "Engineering in Rocks", PHI Learning Pvt. Ltd.	2008

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-524 Course Title : Soil Dynamics and Machine Foundations
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Autumn7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To impart to students the basic knowledge in theory of vibrations and behaviour of soils under dynamic loads so that foundations for various types of machines could be designed.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Theory of vibrations, single, two and multiple degree of freedom systems, vibration	10
	isolation, vibration absorbers, vibration measuring instruments	
2.	Strength characteristics, factors affecting, philosophy of design of equipments,	06
	studies by dynamic tri-axial and oscillatory shear equipments	
3.	Liquefaction, mechanism, factors affecting, studies by dynamic tri-axial testing,	06
	oscillatory shear box, shake table and blast tests, assessment of liquefaction potential	
4.	Dynamic earth pressure, analytical and graphical methods, displacement analysis of	06
	retaining walls, seismic stability of slopes : modified Swedish circle and Taylor's	
	method, concept of yield acceleration and evaluation of displacement of embankment	
5.	Machine foundations, types and basic requirements, analysis and design of	06
	foundations for reciprocating and impact type machines, introduction to the design of	
	T.G. Foundations	
6.	Determination of dynamic elastic constants, various methods including block	08
	resonance tests, cyclic plate load tests, wave propagation tests, oscillatory shear box	
	test, soil liquefaction test	
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Das, B.M., "Fundamentals of Soil Dynamics", Elsevier.	1983
2.	Steven Kramer, "Geotechnical Earthquake Engineering", Pearson.	2008
3.	Prakash, S., "Soil Dynamics", McGraw Hill.	1981
4.	Kameswara Rao, N.S.V., "Vibration Analysis and Foundation Dynamics",	1998
	Wheeler.	
5.	Saran, S., "Soil Dynamics and Machine Foundations", Galgotia.	2006

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-542 Course Title : Continuum Mechanics
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS : 25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To impart to students the basic knowledge in theory of vibrations and behaviour of soils under dynamic loads so that foundations for various types of machines could be designed.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Vector and Tensors Algebra, Lineariziation and Directional Derivatives,	
	Stress and Equilibrium, Analysis for Stresses, Translational and Rotational	
	Equilibrium, Principal Stresses and Principal Planes in 3D, Stress Invariants,	
	Cauchy and Kirchhoff Stress Tensor, Deviatoric and Volumetric	
	Components, Work Conjugancy, Octahedral and von-Mises stresses.	
2.	Kinematics, Linearized Kinematics, Strain Quadric of Cauchy, Principal	
	Strains, Invariants, Equations of Compatibility, Finite Deformation, Material	
	(Lagrangian) and Spatial (Eulerian) Descriptions, Deformation Gradient,	
	Polar Decomposition, Volume change, Distortional Component of	
	Deformation Gradient, Area Change.	
3.	Equations of Elasticity, Hooke's Law, Generalized Hooke's Law,	
	Anisotropic, Orthotropic and Isotropic Elasticity Tensor, Plane Stress and	
	Strain Problems, Airy Stress Functions for Two-Dimensional Problems, Airy	
	Stress Function in Polar Coordinates, Isotropic Hyper elasticity, Three-	
	Dimensional Elasticity.	
4.	Elasto-Plastic Behavior of Material, Elasto-Plastic Formulations, Material	
	Yield Criteria- von Mises, Tresca, Mohr-coulomb, Ducker-Pager, Isotropic	
	and Kinematic Hardening, Normality Principle, Plastic Flow Rule, Plastic	
	Potential, Elasto-Plastic Stress-Strain Relations, Prandtl-Rauss Equations,	
	Levy-Mises Relations, Hardening Modulus, Generalized Elasto-Plastic	
	Stress-Strain Relations	
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	Finite element analysis in Geotechnical Engineering theory, By David M Potts	1999
	and Lidija Zdravkovic, Thomas Telford	
2.	Mechanics of Materials and Interfaces: The Disturbed State Concept, By C	2000
	S Desai, CRC Press LLC	
3.	Mechanics of Geomaterial Interfaces, By A.P.S. Selvadurai, M.J. Boulon,	1995
	Elsevier	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-545 Course Title : Finite Element Analysis
- 2. Contact Hours : L: 3 T: 0 P: 2
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weightage : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PCC
- 8. Pre-requisite: Nil
- 9. Objective: To introduce the concept of domain discretisation and a variational framework of the equations of mechanics. Application of these methodologies to a wide range of engineering problems and connection with the laws of continua.
- 10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Basic Concepts, Discretization; Displacement, Force and Hybrid Models	02
2.	Interpolation Functions for General Element Formulations: Compatibility and	08
	Completeness, Polynomial Forms: One Dimensional Elements, Geometric Isotropy,	
	Triangular Elements, Rectangular Elements, Three Dimensional Elements,	
	Isoperimetric Formulations, Axisymmetric Elements; Numerical Integration.	
3.	Applications in Solid Mechanics: Plane Stress/Strain: FE Formulation: CST, LST;	08
	Stiffness Matrix, Load Matrix Formation Rectangular Element Isoparametric	
	Formulation: Plate Elements and Shell Elements, Three Dimensional Elements FE	
	Formulation: Axisymmetric Stress Analysis, Torsion, Interface Elements, Infinite	
	Elements	
4.	Application in Structural Dynamics and Vibrations: Mass (Consistent and Diagonal)	06
	and Damping Matrices; Modal Analysis, Time History Analysis, Explicit Direct	
	Integration/ Implicit Direct Integration and Mixed Methods.	
5.	Introduction to Nonlinear Problems: Geometric and Material (Elasto-plastic),	08
	Solution Methods: Newton Ralphson Method, Modified Newton-Ralphson Method,	
	Arc Method, A Problem of Geometric Nonlinearity.	
6.	Stationary Principles, Rayleigh Ritz Method and Interpolation; Weighted Residual	06
	Methods and Variational Methods, Numerical Errors and Convergence	
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1.	David Hutton, "Fundamentals of Finite Element Analysis", Tata McGraw Hill	2005
2.	R. D. Cook, Malkus and Plesha, "Concepts and Applications of Finite	1989
	Element Analysis", 3 rd Ed., John Wiley.	
3.	T. J. R. Hughes, "The Finite Element Method : Linear Static and Dynamic	1987
	Analysis", Prentice Hall.	
4.	Klaus Juergen Bathe, "Finite Element Procedures", Prentice Hall of India.	2003
5.	O. C. Zienkiewicz., R. L. Taylor & J. Z. Zhu., "The Finite Element Method Its	2007
	Basis & Fundamentals", Elsivier Publications.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : **CEN-621** Course Title : **Advanced Geotechnical Exploration and Testing**
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective : To impart knowledge of advanced methods of testing of geological materials like soil, rocks and rock masses
- 10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Pressure Meter Testing of Soils and Weak Rocks: Menard pressure meter	05
	equipment, Probe calibration and corrections, Limit pressure, Creep pressure, Tests in	
	soils and weak rocks, Interpretation of test data, Pressure meter modulus of soils &	
	weak rocks	
2.	Dilatometer Testing of Soils: Equipment and procedure of testing, Interpretation of	05
	test data, Geotechnical parameters of clay- OCR, k ₀ , un-drained shear strength, soil	
	stiffness, coefficient of consolidation, Geotechnical parameters of clay- friction angle,	
	state parameter, soil stiffness,	
	Application to problems of settlement of shallow foundations, laterally loaded piles,	
	soil liquefaction etc.	
3.	Stress Path Testing of Soils: Influence of stress history on behavior of soils, Stress	07
	paths for hydrostatic compression (HC), Direct shear (DS), Conventional tri-axial	
	compression (CTC), Conventional tri-axial extension (CTE), True tri-axial	
	compression (TTC), drained and un-drained situations, analysis and interpretation of	
	test data on NC and OC clays	
4.	Post Failure Testing of Rocks: Servo-controlled uni-axial and tri-axial testing of	06
	different rock types, effect of confining pressure, brittle-ductile transition, effect of	
	L/D ratio, Cyclic testing of rock cores, analysis and interpretation of test data	
5.	Electrical Resistivity Methods: Principle, Resistivity of soils and rocks, Resistivity	07
	Technique- Wenner and Schlumberger arrangements, Electrical Soundings, Methods	
	of electrical resistivity profiling, Analysis and interpretation of field test data	
8.	In-situ shear Strength of Jointed Rocks: Equipment and test procedure,	02
	interpretation for peak and residual strength of rock mass	
6.	Measurement of In-situ Stresses in Rocks: Flat jack technique, Hydro-fracturing	04
	method	
7.	In-situ Deformation Modulus of Jointed Rocks : Goodman Jack test, Plate jacking	06
	test, Plate jacking test down the drill hole, radial jacking test etc., interpretation of test	
	data.	
	Total	42

List of Practicals :

- 1. Pressure meter testing of soils during boring and its variation with depth
- 2. Stress path testing of soils under hydro-static compression
- 3. Stress path testing of soils in conventional tr-axial compression
- 4. Stress path testing of soils under true tr-axial compression
- 5. Servo-controlled uni-axial testing of rock specimens
- 6. Servo-controlled tri-axial testing of rock specimens
- 7. Demonstration of electrical resistivity profiling method
- 8. Demonstration of Goodman jack test for deformation modulus of rocks

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1.	Singh Alam, "Soil Engineering in Theory and Practice", Asia Pub. House.	1981
2.	Atkinson, J.H., Bransby, P.L., " The Mechanics of Soils- An Introduction to	1978
	Critical State Soil Mechanics", McGraw Hill Book Co., UK.	
3.	Schnaid, F., "In Situ Testing in Geomechanics", Taylor and Francis.	2009
4.	Hudson, J. A., Harrison, J. P., "Engineering Rock Mechanics", Pergamon Press	1997
5.	Ramamurthy, T., " Engineering in Rocks for Slopes, Foundations and Tunnels",	2007
	Prentice Hall.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-622 Course Title : Advanced Foundation Engineering
- 2. Contact Hours : L: 3 T : 1 P: 2/2
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :20 PRS: 20 MTE: 20 ETE: 40 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course: To impart knowledge of methods of analysis and design of various foundations.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Planning of soil exploration for different projects, methods of subsurface	05
	exploration, methods of borings along with various penetration tests	
2.	Shallow foundations, requirements for satisfactory performance of foundations,	06
	methods of estimating bearing capacity, settlements of footings and rafts,	
	proportioning of foundations using field test data, IS codes, pressure - settlement	
	characteristics from constitutive laws	
3.	Pile foundations, methods of estimating load transfer of piles, settlements of pile	06
	foundations, pile group capacity and settlement, laterally loaded piles, pile load	
	tests, analytical estimation of load- settlement behaviour of piles, proportioning of	
	pile foundations, lateral and uplift capacity of piles	
4.	Well foundation, IS and IRC codal provisions, elastic theory and ultimate resistance	05
	methods	
5.	Tunnels and arching in soils, pressure computations around tunnels	04
6.	Open cuts, sheeting and bracing systems in shallow and deep open cuts in different	06
	soil types	
7.	Coffer dams, various types, analysis and design	03
8.	Foundations under uplifting loads	04
9.	Soil-structure interaction	03
	Total	42

List of Practicals:

- 1. Exploratory borings by different methods including auger boring
- 2. Wash boring
- 3. Percussion drilling and rotary drilling etc. followed by planning of soil exploration for different projects,
- 4. Standard penetration tests
- 5. Dynamic cone penetration tests
- 6. Static cone penetration tests
- 7. Plate load tests
- 8. Load tests on piles

S.	Name of Authors/Books/Publishers	Year of
No.		Publication/
		Reprint
1.	Bowles, Joseph E., "Foundation Analysis and Design", Mc-Graw Hill.	1996
2.	Das, Braja M., "Principles of Foundation Engineering", PWS Publishing.	1998
3.	Som, N, N. and Das S. C., "Theory and Practice of Foundation Design",	2003
	Prentice Hall.	
4.	Poulos, H. G. and Davis, F. H., "Pile Foundation Analysis and Design", Wiley	1980
	and Sons.	
5.	Saran, S., "Analysis and Design of Substructures", Oxford and IBH.	2006

Department of Civil Engineering

NAME OF DEPTT/CENTRE :

- 1. Subject Code : **CEN-623** Course Title : **Stability Analysis of Slopes**
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course : Landslides is a very common phenomenon in hilly regions and results in loss of life and property. The course is designed to identify various modes of failures and study their safety aspects including provision of remedial measures.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Introduction, classification of natural slopes and excavation failures, slope stability –	04
2.	Collection and analysis of geological data, field survey and testing, graphical presentation of geological data and evaluation of potential slope problems	06
3.	Seepage analysis, in-situ permeability tests, two dimensional flow – Laplace equation and it's solution, graphical method, determination of phreatic line, flow nets in homogeneous and zoned earth dams under steady seepage and draw-down conditions, seepage control in earth dams, influence of seepage on slope stability	06
4.	Soil slopes, infinite slope, method of slices, friction circle methods etc., Bishop's modified method, Bishop's rigorous method, Janbu's method, Morgenstern and Price, Spencer's method, stability analysis of dam body during steady seepage	08
5.	Rock slopes, methods of slope stability analysis, plane failure, wedge failure, over toppling failure, Hoek & Bray's charts, three dimensional wedge analysis, seismic considerations, computer programs, use of non-linear failure criterion in rock slope stability analysis	10
6.	Strengthening measures, stabilization of slopes by drainage methods, surface and subsurface drainage, use of synthetic filters, retaining walls, stabilization and strengthening of slopes, shotcreting, rock bolting and rock anchoring	06
7.	Instrumentation and monitoring of slopes, slope movements, warning devices, maintenance of slopes	02
	Total	42

S.	Name of Authors/Books/Publisher	Year of
No.		Publication/
		Reprint
1.	Hoek, E. and Bray, J.W., "Rock Slope Engineering" Institution of Mining	1981
	Engineering.	
2.	Giani, G.P., "Rock Slope Stability Analysis", A A Balkema.	1992
3.	Wyllie Duncan C and Christofer W Mah," Rock Slope Engineering" Spon Press,	2004
	Taylor and Francis Group.	
4.	Singh, B. and Goel, R.K.,"Software for Engineering Control of Landslides and	2002
	Tunneling Hazards", A A Balkema.	
5.	Harr M.E.," Ground Water and Seepage", McGraw Hill.	1962
6.	Chowdhary Robin and Chowdhary Indrajit, "Geotechnical Slope Analysis", CRC	2009
	Press.	

Department of Civil Engineering

NAME OF DEPTT/CENTRE :

- 1. Subject Code : **CEN-624** Course Title : **Design of Underground Excavations**
- 2. Contact Hours : L: 3 T : 1 P: 0
- 3. Examination Duration (Hrs): Theory: 3 Practical: 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To impart knowledge of methods of analysis and design of underground excavations in rocks and jointed rock masses for hydro-power projects and large underground storages for various purposes.

10. Details of Course :

S. No.	Contents	Contact Hours
1.	Introduction, planning of and exploration for various underground construction projects	04
2.	Stereographic projection method, principle and its application in underground excavation design	04
3.	Elastic stress distribution around tunnels, stress distribution for different shapes and under different in-situ stress conditions, Greenspan method, design principles, multiple openings, openings in laminated rocks, elasto-plastic analysis of tunnels, Daemen's theory	08
4.	Application of rock mass classification systems, ground conditions in tunneling, analysis of underground openings in squeezing and swelling ground, empirical methods, estimation of elastic modulus and modulus of deformation of rocks; uni- axial jacking / plate jacking tests, radial jacking and Goodman jacking tests, long term behaviour of tunnels and caverns, New Austrian Tunneling Method (NATM), Norwegian Tunneling Method (NTM), construction dewatering	09
5.	Rock mass-tunnel support interaction analysis, ground response and support reaction curves, Ladanyi's elasto-plastic analysis of tunnels, design of various support systems including concrete and shotcrete linings, steel sets, rock bolting and rock anchoring, combined support systems, estimation of load carrying capacity of rock bolts	08
6.	In-situ stress, flat jack, hydraulic fracturing and over coring techniques and USBM type drill hole deformation gauge, single and multi-point bore hole extension extension load cells, pressure cells, etc	05
7.	Instrumentation and monitoring of underground excavations, during and after construction, various case studies	04
	Total	42

S.	Name of Authors /Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Hoek, E and and Brown, E. T.," Underground Excavations in Rocks",	1983
	Institute of Mining Engineering.	
2.	Obert, L. and Duvall, W.I., "Rock Mechanics and Design of Structures in	1967
	Rocks", John Wiley.	
3.	Singh, B. and Goel, R.K.,"Rock Mass Classification- A Practical	2006
	Engineering Approach", Elsevier.	
4.	Singh, B. and Goel, R.K., "Tunnelling in Weak Rocks", Elsevier.	2006
5.	Ramamurthy, T., "Engineering in Rocks", PHI Learning.	2008

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-625 Course Title : Ground Improvement Engineering
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course: To apprise the students about treatment of poor soil conditions for development activities and tell them about state of art in this area by case studies.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Introduction, typical situations where ground improvement becomes necessary,	05
	historical review of methods adopted in practice, current status and the scope in the	
	Indian context	
2.	Methods of ground improvement, mechanical compaction, dynamic compaction,	09
	impact loading, compaction by blasting, vibro-compaction; pre-compression,	
	dynamic consolidation, design aspects of stone columns, use of admixtures,	
	injection of grouts, design guidelines and quality control, design examples on	
	preloading with sand drains, road designs with geosynthetics	
3.	Reinforced earth, basic mechanism, constituent materials and their selection;	10
	engineering applications – shallow foundations on reinforced earth, design of	
	reinforced earth retaining walls, reinforced earth embankments structures, wall	
	with reinforced backfill, analysis and design of shallow foundations on reinforced	
	earth	
4.	Geotextiles, selection and engineering applications, design examples,	08
	stabilisation/improvement of ground using geomembranes, geocells, geonets,	
	geosynthetic walls	
5.	Soil nailing, construction of underground structures, landslide controls, deep	04
	vertical cuts, contiguous piles	
6.	Problematic soils, use of ply soils, improvement of saline soils, improvement of	06
	black cotton soils	
	Total	42

S.	Name of Authors/Books/Publisher	Year of
No.		Publication/
		Reprint
1.	Moseley, M. P. and Kirsch K.,"Ground Improvement", Spon press.	2004
2.	Mittal, Satyendra, "Ground Improvement Engineering", Vikas publishing house	2010
3.	Koerner, R.M., "Designing with Geosynthetics" Prentice hall.	1990
4.	Saran, S., "Reinforced Soil and Its Engineering Applications", I.K. international	2005
5.	Rao, G.V., Geosynthetics – An Introduction, Sai Master geoenvironmental	2007
	services.	
6.	Jones, CJFP, "Earth Reinforcement and soil structure", Thomas Telford	1996
7.	Shukla, S.K., Yin, Jian-Hua, "Fundamentals of Geosynthetic Engineering",	2006
	Taylor & Francis.	

Department of Civil Engineering

NAME OF DEPTT/CENTRE :

- 1. Subject Code : **CEN-626** Course Title : **Foundations on Weak Rocks**
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course : This course is designed to impart knowledge for design of foundations of structures in hill regions and methods for treatment of weak foundations to make them stable.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Engineering properties of weak rocks, different rock mass classification systems,	02
	relative merits and demerits	
2.	Failure criteria for weak rocks, bi-linear Mohr-Coulomb failure criterion, Hoek and	02
	Brown criterion and modified Hoek and Brown failure criterion etc.	
3.	Effect of structural planes on rock foundations, possible modes of failure of	04
	foundations on rocks/ rock masses, determination of in-situ shear strength of rocks	
	and rock masses	
4.	Requirements for satisfactory performance of foundations, bearing capacity of	07
	foundations on rocks and rock masses, allowable bearing pressure of rock	
	foundations using a nonlinear failure criterion, monotonic and cyclic plate load	
	tests	
5.	Pressure-settlement characteristics, effect of layering, anisotropy, heterogeneity and	06
	in-elasticity	
6.	Shallow foundations, shallow foundations on sloping ground, raft foundations, stilt	08
	foundations, foundations for suspension bridges, transmission line towers, framed	
	buildings etc, treatment of foundations - open joints, solution cavities, weak seams	
7.	Piles in weak rocks, bearing capacity and settlement of piles, piles in stratified rock	06
	masses, field load tests on piles in weak rocks, behaviour of bored / driven piles in	
	soft / weathered rocks, case studies	
8.	Dam foundations, stability analysis, 3D wedge analysis of abutments of arch dams,	07
	dam-foundation interaction problems, influence of discontinuities like faults, fault	
	zones, shear zones, seams etc on stability of dams, seepage below dam foundations	
	etc., treatment of dam foundations- shear keys, dental treatment of faults, seams,	
	grouting of cavities, grout curtains, cable anchors etc	
	Total	42

S.	Name of Authors/Books/Publisher	Year of
No.		Publication/
		Reprint
1.	Wyllie Duncan C.," Foundations on Rock: Engineering Practice", E&FN Spon,	2005
	Taylor and Francis.	
2.	Singh, B. and Goel, R.K.,"Rock Mass Classification- A Practical Engineering	2006
	Approach", Elsevier.	
3.	Hudson, J. A.(Chief Ed.), "Comprehensive Rock Engineering: Principles-	1993
	Practice & Project," Vols. 1-5, Pergamon press.	
4.	Hoek, E., "Practical Rock Engineering", Rock science.	2000
5.	Ramamurthy, T., "Engineering in Rocks", PHI learning.	2008

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-627 Course Title : Landslide Analysis and Control
- 2. Contact Hours : L: 3 T: 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 04 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective : To impart knowledge of advanced methods of testing of geological materials like soil, rocks and rock masses
- 10. Details of Course :

S. No.	Contents	Contact
		Hours
1.	Landslide hazard and risk	03
2.	Landslides in earth systems	03
3.	Earthquake and seismically induced landslides	03
4.	Stability analysis soil and rock slopes	03
5.	Rainfall analysis and rainfall induced landslides	03
6	Risk assessment	03
7	Landslide hazard zonations	03
8	Numerical modelling of landslides	03
9	Remote sensing techniques	03
10	Groundwater system analysis for landslides	03
11	Remediation techniques	03
12	Early warning systems	03
12	Disaster Mitigation	03
14	Sustainability and environmental issues	03
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Landslides: Analysis and Control, Volume 176 of Special report -	1978
	Transportation Research Board, National Research Council, National Research	
	Council (U.S.). Transportation Research Board	
2.	Singh, B. and Goel, R.K., "Rock Mass Classification – A Practical Engineering	2006
	Approach", Elsevier	
3.	Hoek, E. and Bray, J.W., "Rock Slope Engineering", Institute of Mining Engg.	1981
4.	Giani, G.P., "Rock Slope Stability Analysis", A.A. Balkema	2002
5.	Singh, B. and Goel, R.K., "Software for Engineering Control of Landslide and	2002
	Tunneling Hazards", A.A. Balkema	
6.	Deoja, B., Dhital, M., Thapa, B., Wagner, A., "Mountain Risk Engineering	2002
	Handbook", ISIMOD, Kathmandu	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

- 1. Subject Code : CEN-628 Course Title : Constitutive Models for Geological Materials
- 2. Contact Hours : L: 3 T : 1 P: 0
- 3. Examination Duration (Hrs) : Theory : 3 Practical : 0
- 4. Relative Weight : CWS :25 PRS: 0 MTE: 25 ETE: 50 PRE: 0
- 5. Credits : 046. Semester: Spring7. Subject Area : PEC
- 8. Pre-requisite: Nil
- 9. Objective of Course : To important knowledge in respect of various constitutive models for soil and rock involving stress-strain relationships.

10. Details of Course :

S.	Contents	Contact
No.		Hours
1.	Role of constitutive modeling	02
2.	Importance of Laboratory Testing with Relation to Constitutive Modeling;	02
3.	Elasticity: Linear, quasilinear, anisotropic;	04
4.	Plasticity basics: Yield criteria, Flow rule, Plastic Potential, Hardening/	06
	softening;	
5.	Rate Independent Plasticity: Mohr-Coulomb, Non-linear failure criteria,	06
	Drucker-Prager, and Cap models	
6.	Critical State Soil Mechanics: Critical state concept, Cam-clay models,	06
7.	Constitutive model for rocks	04
8.	Simulation of single element test using cam-clay: consolidation, drained	04
	and undrained triaxial test,	
9.	Stress-dilatancy theory	02
10.	Work Hardening Plasticity Theory Formulation and implementation	02
11.	Applications of Elasto-plastic models	02
12.	Special Topics: Hypoelasticity-plasticity, Disturbed state concept	02
	Total	42

S.	Name of Authors/Books/Publishers	Year of
No.		Publication /
		Reprint
1.	Hicher and Shao, "Constitutive Modeling of Soils and Rocks", John	2008
	Wiley.	
2.	N. Schofield and C. P. Wroth, "Critical State Soil Mechanics",	1968
	McGraw-Hill.	
3.	C.S. Desai and H. J. Siriwardane, "Constitutive Laws for Engineering	1984
	Materials with Emphasis on Geologic Materials", Prentice-Hall, Inc.,	
	New Jersey.	
4.	David M Potts and Lidija Zdravkovic, "Finite Element Analysis in	1999
	Geotechnical Engineering Theory", Thomas Telford.	
5.	C.S. Desai, "Mechanics of Materials and Interfaces : The Disturbed	2000
	State Concept", CRC Press LLC.	
6.	A.P.S. Selvadurai, M.J. Boulon, "Mechanics of Geomaterial Interfaces,	1995
	Elsevier.	

NAME OF DEPTT/CENTRE : Department of Civil Engineering

1. Subject Code : CEN-650 Course Title : Design of Bridge Substructures

2. Contact Hours : L: 3 T: 0 P: 2

3. Examination Duration (Hrs): Theory: 3 Practical: 0

4. Relative Weight : CWS : 15 PRS: 25 MTE: 20 ETE: 40 PRE: 0

- 5. Credits : 4 6. Semester: Spring 7. Subject Area : PEC
- 8. Pre-requisite: Nil

9. Objective: To introduce the behaviour and design of bridge substructures.

10. Details of Course:

S.	Contents	Contact
No.		Hours
1.	Hydraulic calculations related to bridge design	04
2.	Analysis and design of piers and pier caps	06
3.	Seismic restrainers	01
4.	Analysis and design of abutments	04
5.	Analysis and design of well foundations	15
6.	Analysis and design of pile foundations	12
	Total	42

S. No.	Name of Authors/Books/Publishers	Year of Publication/ Reprint
1.	Vijay Singh, "Wells and Cassions" Nem Chand & Sons.	1981
2.	S. Saram, "Analysis and Design of Substructures".	2012
3.	Ponnuswamy, "Bridge Engineering".	1986
4.	D. J. Victor, "Essentials of Bridge Engineering".	2001
5.	Rakshit, "Design and Construction of Highway Bridges".	2004